
                           Logistic map 

The simplest nonlinear iteration is a quadratic map 𝑥𝑘+1 = 𝑎𝑥𝑘
2 + 𝑏𝑥𝑘 + 𝑐. 

Unlike the tent map and the shift map, it and all its derivatives are continuous. 

A simple model with a quadratic map is the logistic map 𝑥𝑘+1 = 𝑟𝑥𝑘(1 − 𝑥𝑘). 

Population model 

Let 𝑦𝑘 be the number of animals in some population for year 𝑘. If each animal on average reproduces with a 

factor 𝑟 then the next year there will be 𝑦𝑘+1 = 𝑟𝑦𝑘 animals, which would create exponential growth with 

shortages of food and space. To take this into account let’s assume a maximal possible population 𝑦̅ and that 

when 𝑦𝑘 approaches 𝑦̅ the population grows in proportion to (1 − 𝑦𝑘/𝑦̅). The simplest model that works for 

both low and high concentrations is 𝑦𝑘+1 = 𝑟𝑦𝑘(1 − 𝑦𝑘/𝑦̅). Divide by 𝑦̅ and let 𝑥𝑘 = 𝑦𝑘/𝑦̅ be the population 

relative to its maximal size, 0 ≤ 𝑥𝑘 ≤ 1. The resulting model for the population is: 𝑥𝑘+1 = 𝑟𝑥𝑘(1 − 𝑥𝑘). 

Iterator program 

To get a feeling for how the iteration behaves you can start the program ITERATOR on the menu. The initial 

value is usually not of any significance for the long-term behaviour. You can select to give an initial value 𝑥0 

or let the program pick a random number from the interval [0,1] for each iteration. 

The program offers three alternative iteration maps 𝑥𝑘+1 = 𝑟𝑓(𝑥𝑘) with the same general unimodal form. 

𝐷𝑓 = [0,1], start at (0,0), end in (1,0) and a maximum in between with 0 ≤ 𝑥max ≤ 1 so that ∀𝑘: 𝑥𝑘 ∈ [0,1]. 

Two of the maps has an extra parameter 𝑠 to adjust the character of the maximum, its power and position. 

The fourth map is a sine function, 𝑥𝑘+1 = 𝑟 sin(𝜋𝑥𝑘). 

The iteration will, depending on the value of 𝑟, either converge towards an attracting 𝑘-cycle or move around 

chaotically, towards a limiting set. To show the attracting set for various 𝑟 there is a settling-in phase [0, 𝑘min] 

and a settling-down phase [𝑘min + 1, 𝑘max]. The values of 𝑘min and 𝑘max can be chosen freely in the program. 

There are four views, two for the iterations, one for the attracting set for various 𝑟 and one for the Lyapunov 

exponent (𝜆) for the same interval of 𝑟 with calculation of 𝜆 based on the interval [𝑘min, 𝑘max]. 

Compositions of the iteration map can be shown in cobweb diagram. Compositions 𝑓𝑘(𝑥) = 𝑓(𝑓𝑘−1(𝑥)) 

are interesting to study when the iteration is or getting close to being attracted to a 𝑘-cycle. 

The iteration can be shown instantaneously or gradually to show how the iteration proceeds and you can zoom 

in on the attractor diagram, either by giving bounding values directly or by selecting a view with the mouse. 

Solutions in closed form 

Nonlinear equations do normally not have a solution in closed form, 𝑥𝑛 = 𝑔(𝑛) with 𝑔 is expressible as a finite 

number of operators (+ −×÷) and elementary functions like roots, exponents and trigonometric functions. 

The only way to get the solutions is by numerical methods and calculate 𝑥1, 𝑥2, … , 𝑥𝑛−1 and then 𝑥𝑛. 

The situation is similar for nonlinear differential equations. 

An exception to this rule is the logistic map when 𝑟 = 4: 𝑥𝑘+1 = 4𝑥𝑘(1 − 𝑥𝑘) and 𝑟 = ±2.  

  

0 1/2 1 
0 

𝑟/4 

𝑥𝑘+1 

𝑥𝑘 



A change of variables, 𝑥𝑘 = 1/2 ⋅ (1 − cos 2𝜋𝑦𝑛) gives: 

 

1/2 ⋅ (1 − cos(2𝜋𝑦𝑛+1)) = (1 − cos(2𝜋𝑦𝑛) (1 + cos(2𝜋𝑦𝑛)) 

1/2 ⋅ (1 − cos(2𝜋𝑦𝑛+1)) = 1/2 ⋅ (1 − cos
2(2𝜋𝑦𝑛))   [cos2 𝛼 =

cos 2𝛼 + 1

2
] 

1/2 ⋅ (1 − cos(2𝜋𝑦𝑛+1)) = 1/2 ⋅ (1 − cos(4𝜋𝑦𝑛))  →  𝑦𝑛+1 = 2𝑦𝑛 mod 1 

                                                                                                              𝑦𝑛 = 2
𝑛𝑦0 mod 1 

𝑥𝑛 = 1/2 ⋅ (1 − cos(2𝜋2
𝑛𝑦0))   with   𝑦0 =

1

2𝜋
cos−1(1 − 2𝑥0) 

The invariant density 𝜌(𝑥) i.e. the distribution of 𝑥𝑘 for a typical iteration 

series of 𝑥𝑘 = 4𝑥𝑘(1 − 𝑥𝑘) can be calculated based on the Bernoulli map 

that has a uniform distribution of iterates for a random initial value, 𝜌̃(𝑦) = 1 

𝜌(𝑥)|𝑑𝑥| = 𝜌̃(𝑦)|𝑑𝑦| and 𝑥 = 0.5 ⋅ (1 − cos 2𝜋𝑦)  →  𝜌(𝑥) = 𝜋−1(𝑥(1 − 𝑥))
−1/2

 

   Iterations, fixpoints and cycles 

There are two parameters to vary, 𝑥0 and 𝑟 when 

studying the iterates 𝑥0, 𝑥1, 𝑥2, … of the logistic map, 

𝑥𝑘+1 = 𝑟𝑥𝑘(1 − 𝑥𝑘) = 𝑓𝑟(𝑥𝑘). Start from 𝑟 = 0 and 

go up to 4, for each 𝑟 study the effects of different 𝑥0. 

From the diagrams it’s clear that when 𝑓𝑟
′(0) < 1 there is one fixpoint 𝑥∗ = 0 that is attractive (stable). 

The population will go extinct no matter the initial value of 𝑥0. 

lim
𝑘→∞

𝑥𝑘 = 0 for every 𝑥0 ∈ 𝐷𝑓 = [0,1] whenever 𝑓𝑟
′(0) < 1  𝑓𝑟

′(𝑥) = 𝑟(1 − 2𝑥) → 𝑓𝑟
′(0) < 1 if 𝑟 < 1 

The attracting area of a stable fixpoint is called the basin of attraction. 

As 𝑟 passes 1 the fixpoint 𝑥∗ goes from attracting to repelling and a new fixpoint emerges. 

𝑓𝑟(𝑥
∗) = 𝑥∗  →  𝑟𝑥∗(1 − 𝑥∗) = 𝑥∗  →  𝑥∗ = 1 − 1/𝑟 

|𝑓𝑟
′(1 − 𝑟−1)| = |2 − 𝑟| 

The new fixpoint is stable |𝑓𝑟
′(𝑥∗)| < 1 when 1 < 𝑟 < 3 

and has a basin of attraction 0 < 𝑥 < 1. It becomes unstable 

when  |𝑓𝑟
′(𝑥∗)| > 1, i.e. when 𝑟 > 3 and things get interesting. 

The fixpoint becomes repelling and an attractive 2-cycle emerges 

with two points that satisfy 𝑓(𝑓(𝑥∗)) = 𝑥∗ and |𝐷𝑓2(𝑥∗)| < 1. 

An 𝑛-cycle has 𝑛 distinct points 𝑥1, 𝑥2, … 𝑥𝑛 with 𝑓𝑛(𝑥𝑖) = 𝑥𝑖 and 𝑓𝑘(𝑥𝑖) ≠ 𝑥𝑖 for 𝑘 < 𝑛. 

The cycle is attracting if |𝐷𝑓𝑛(𝑥∗)| < 1 and repelling if |𝐷𝑓𝑛(𝑥∗)| < 1. 

𝐷𝑓𝑛(𝑥∗)  = 𝑓′(𝑥1) ⋅ 𝑓
′(𝑥2) ⋅ … ⋅ 𝑓

′(𝑥𝑛) → 𝑓′(𝑥𝑖) has the same value for all 𝑥𝑖. 

The approach or retreat from a cycle is oscillating or one-sided depending on the sign of 𝐷𝑓𝑛(𝑥∗). 

Solving  𝑓2(𝑥∗) = 𝑥∗  →  𝑥∗ =
𝑟 + 1 ± √𝑟2 − 2𝑟 − 3

2𝑟
 an attractive cycle of 2 points for 3 < r < 3.4495 

Analyzing 𝑓𝑛(𝑥) = 𝑥 →  
22 cycle: 𝑟 ∈ 3.4495 → 3.5441

23 cycle: 𝑟 ∈ 3.5441 → 3.5644
      

𝑟2 = 3 𝑟22 = 3.4495 𝑟23 = 3.5441  𝑒𝑡𝑐.

with accumulation point 𝑟2∞ = 3.5699…
 

The process of period doubling is called bifurcation.  

𝑦0 

𝑦1 = 2𝑦0 
 

on a circle with 𝑟 = 1/2𝜋 and 𝐶 = 1 

Bernoulli map: 

 𝑦𝑛+1 = 2𝑦𝑛 mod 1 
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Bifurcation 

The fixpoint 𝑥∗ = 1 − 1/𝑟 of 𝑓(𝑥)is also a fixpoint of 𝑓2(𝑥). 

As 𝑟 passes through 3, 𝑓′(𝑥∗) = 2 − 𝑟 passes through −1, 

from being a stable fixpoint to becoming unstable. 

As this happens the slope of 𝑓2 with 𝐷𝑓2(𝑥∗) = (𝑓′(𝑥∗))
2
  

goes from below 1 to above 1, two new fixpoints of 𝑓2 emerge. 

These new fixpoints 𝑥∗ = 𝑥1,2 are not fixpoints of 𝑓.  

𝑓2(𝑥∗) = 𝑥∗ and 𝑓(𝑥∗) ≠ 𝑥∗  ⇒ They belong to a period 2 orbit. 

Their slope 𝐷𝑓2(𝑥∗) = 𝑓′(𝑥1)𝑓′(𝑥2) is such that the orbit is stable. 

The process is a general feature called a period doubling bifurcation that happens repeatedly as stable cycles 

becomes unstable when 𝑟 is increased and fixpoint splits into two and create new orbits of double period. 

 

 

 

 

 

 

 

 

An illustration of the bifurcation process is in this Geogebra animation that shows 𝑓, 𝑓2, 𝑓3, 𝑓4 and fixpoints as 

𝑟 is animated from 𝑟 = 0 to 𝑟 = 4. It shows how orbits of period 2𝑛 are created. One can also see another type 

of process, a process that is associated with 𝑓3, the creation of a stable orbit of period 3. 

As 𝑟 is increased 𝑓3(𝑥) reaches the line 𝑦 = 𝑥 at three points simultaneously 𝑥∗ = 𝑥1,2,3. This is not a miracle 

since 𝑓3(𝑥1) = 𝑥1 ⇒ 𝑓3(𝑥2) = 𝑥2 ⇒ 𝑓3(𝑥3) where 𝑥1, 𝑥2, 𝑥3 are a sequence in the iteration of 𝑓. 

They all have same slope in 𝑓3 since 𝐷𝑓3(𝑥∗) = 𝑓′(𝑥1) ⋅ 𝑓
′(𝑥2) ⋅ 𝑓′(𝑥3) and when they appear 𝐷𝑓3(𝑥∗) = 1. 

 

 

 

 

 

 

 

 

 

The first period-3 orbit happens when {
𝑓𝑟
3(𝑥) = 𝑥

𝐷𝑓𝑟
3(𝑥) = 1

→ 𝑟3 = 3.8284…  → 𝑟3⋅2 = 3.8414…  → ⋯ 

The period-3 orbit is followed by bifurcation in the same fashion as above, generating orbits of period 3 ⋅ 2𝑛. 

The intervals of these orbits get shorter and shorter and end up in an accumulation point at 𝑟3⋅2∞ = 3.8540… 

In a similar fashion there are period-𝑝 orbits followed by bifurcations 𝑝 ⋅ 2𝑛 and accumulation points 𝑝 ⋅ 2∞. 

The two different types of split (A and B) are called pitchfork bifurcation (A) and tangent bifurcation (B). 

Where does the period-3 orbit come from and what happens after the accumulation points 𝑟2∞ and 𝑟3⋅2∞? 

Type of fixpoint 𝑓′(𝑥∗) 
unstable, monotonous 1 → ∞ 

hyperbolic, saddle point 1 

stable, monotonous 0 → 1 

super-stable 0 

stable, alternating −1 → 0 

hyperbolic, saddle point −1 

unstable, alternating −∞ → −1 
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Bifurcation diagram and Chaos 

Too see what happens after the accumulation point 𝑟2∞ and before the period-3 orbit 𝑟3 one uses a plot of the 

‘attracting’ set as a function of 𝑟, from 𝑟 = 0 to 𝑟 = 4. For each 𝑟, take a random 𝑥0 or 𝑥0 = 1/2, which one 

doesn’t matter and iterate a few hundred times (𝑘min) until the iterates 𝑥𝑘+1 = 𝑟𝑥𝑘(1 − 𝑥𝑘) are close to their 

‘attracting set’ and then iterate a few hundred times more (𝑘max − 𝑘min) to get a picture of what the iteration is 

approaching. 𝑘min and 𝑘max are parameters you chose in the ITERATOR program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagrams show the initial attracting point 𝑥∗, first 𝑥∗ = 0 and later 𝑥∗ = 1 − 𝑟−1 which splits at 𝑟2 = 3 to 

𝑥1,2 = 1/2 ⋅ (1 + 𝑟
−1 ± √𝑟2 − 2𝑟 − 3) followed by a series of bifurcations at 𝑟2𝑛 ending in 𝑟2∞ = 3.5699… 

Then comes periods of chaos where the iterates fluctuate wildly inside one or several disconnected intervals. 

The 𝑟-values with chaotic orbits are interspersed with intervals of periodic orbits. The largest is the period-3 

window starting at 𝑟3. First when 𝑟 = 4 does the iteration fluctuate over the whole interval [0,1] but not 

uniformly. The distribution of iterates 𝑥𝑘 follows the invariant density 𝜌4(𝑥) =
1

𝜋√𝑥(1−𝑥)
. 

As 𝑟 decrease from 𝑟 = 4 the 𝑥-area that the 𝑥𝑘 occupy when there is chaos goes from one connected interval 

to 2 and then 4 and after a series of splits 𝑟⃖2, 𝑟⃖4, 𝑟⃖8, … there is an accumulation point 𝑟⃖2∞ that coincides with 𝑟2∞.   
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Bifurcation diagram with enlargement 

Growth rate 
𝑟 𝑟 

𝑥 𝑥 
𝑟2 𝑟4 𝑟8 𝑟24 𝑟3 

𝑟⃖2 𝑟⃖4 𝑟⃖8 



The bifurcation diagram shows several bands with periodic orbits that emerge from chaos. Each time when an 

orbit of period 𝑝 appears there is a series of bifurcations with orbits of period 𝑝 ⋅ 2𝑛.. Each band in a period-𝑝 

window contains a miniature version of the whole diagram. The bifurcation diagram is self-similar with smaller 

copies of itself within smaller copies of itself in all eternity. 

When the chaotic 𝑥-region is split in several bands the iterates alternates between the bands in the same order as 

in the corresponding finite orbit (𝑟2𝑛 ↔ 𝑟⃖2𝑛). Eventually the iterates comes arbitrarily close to every point in 

the band. 

The periodic windows are dense throughout the chaotic range [𝑟2∞ , 4], i.e. in any neighbourhood [𝑟 − 𝜀, 𝑟 + 𝜀] 

there will always be some periodic orbit of type 𝑝 ⋅ 2𝑛. The number of windows of period 𝑝 is (2𝑝 − 2)/(2𝑝). 

The probability of finding a chaotic orbit in [𝑟2∞ , 4] has been shown to be bigger then zero (as the Lebesgue 

measure of the set of chaotic 𝑟′𝑠), something resembling a fat Cantor set where you start from [0,1] and instead 

of repeatedly removing a middle third of remaining intervals you remove a smaller proportion each time. 

Three theorems on orbit structure 

There are three famous theorems about the orbit structure of unimodal maps: 

• Sharkovskii’s theorem on existence of periodic orbits (1964) 

• Metropolis, Stein & Stein’s theorem on the organization of periodic orbits (1973) 

• Li & Yorke’s theorem that a period-3 orbit implies existence of chaos (1975)  

Sharkovskii’s theorem: There is an ordering of  ℤ+ such that if a continuous map 𝑓:ℝ → ℝ has a periodic 

orbit of length 𝑛, 𝑓𝑛(𝑥∗) = 𝑥∗, then 𝑓 will also have a period-𝑝 orbit for every 𝑝 that is after 𝑛 in the order. 

Sharkovskii’s order of the positive integers is as follows: 

3 → 5 → 7 → ⋯⏟          
odd numbers

→ 2 ⋅ 3 → 2 ⋅ 5 → 2 ⋅ 7 → ⋯⏟                
21⋅odd number

→ 223 → 225 → 227 → ⋯⏟                
22⋅odd number

 …→ 23 → 22 → 2 → 1⏟            
no odd factor

 

𝐸𝑥: If 𝑓𝑟(𝑥) = 𝑟𝑥(𝑥 − 1) has a period-8 orbit for some initial value 𝑥0,8 then there will be other initial values 

𝑥0,4 , 𝑥0,2 , and 𝑥0,1 with orbits of period 4, 2 and 1 respectively for the same 𝑟. 

The animation of 𝑓, 𝑓2, 𝑓3, 𝑓4 as 𝑟 increase shows that there is an orbit of period-3 for every 𝑟 ∈ [𝑟3, 4]. 

This means that there must also be initial values 𝑥0,𝑛 that will result in orbits of any period 𝑛 besides 3. 

Note that ordering is total but not a well-order, the subset {1,2,4,8… } does not have a least element. 

The theorem doesn’t concern the stability of the orbits. For a proof see [24], in the online reference list. 

The second theorem by Metropolis et al. concern the structural universality of super-stable orbits of unimodal 

maps of the form 𝑥𝑘+1 = 𝑟𝑓(𝑥𝑘). An orbit is super-stable if its stability coefficient 𝑓′(𝑥∗) is zero, which means 

a Lyapunov exponent 𝜆(𝑥∗) = −∞ . 

For the logistic map with max at 𝑥 = 1/2 all super-stable orbits pass 𝑥 = 1/2 so we can assume 𝑥0 = 1/2. 

A 𝑝-orbit 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑝−1 is categorized by a sequence of  𝑝 - 1 letters. 

Letter 𝑘 is L if 𝑥𝑘 goes to left, 𝑥𝑘 < 𝑥0 and R if 𝑥𝑘 goes to the right, 𝑥𝑘 > 𝑥0. 

As 𝑟 is increased there will be a sequence of orbits labelled by their 

RL-sequences, the orbit on display will be categorized as 𝑅𝐿𝐿. 

  
𝑥0 



Table of all super-stable orbits up to period 6 ordered by 𝑟 for the logistic map and for the sine map: 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Theorem of Metropolis, Stein & Stein: 

The ordering of RL-strings for super-stable orbits is universal for all maps on the interval [0,1] 

with a differentiable maximum that fall of monotonically on both sides. 

 

Note that the universality does not depend on the order of the maximum. 

Li & Yorke’s theorem is also known as ‘period three implies chaos’. It is is an extension of the Sharkovskii 

theorem. They showed that the existence of a period-3 orbit implies the existence of an uncountable set of 

orbits that never settle into a periodic cycle. They introduced the term Chaos for this situation. 

A consequence is that for a given value of 𝑟 in [𝑟3, 𝑟6] where there is an attracting period-3 orbit there will also 

be an uncountable number of initial values 𝑥0 with non-periodic, non-attracting and complicated orbits. These 

initial orbits turn out to be of zero Lebesgue measure. 

Feigenbaum constants 

  

Period Sequence 
Parameter 𝒓 of 

𝒙𝒌+𝟏 = 𝒓𝒙𝒌(𝟏 − 𝒙𝒌) 
Parameter 𝒓 of 

𝒙𝒌+𝟏 = 𝒓 𝐬𝐢𝐧𝝅𝒙𝒌 

2 R 3.2360680 0.777338 

4 RLR 3.4985617 0.8463822 

6 RLR3 3.6275575 0.8811406 

5 RLR2 3.7389149 0.9109230 

3 RL 3.8318741 0.9390431 

6 RL2RL 3.8445688 0.9435875 

5 RL2R 3.9057065 0.9633656 

6 RL2R2 3.9375364 0.9735656 

4 RL2 3.9602701 0.9820353 

6 RL3R 3.9777664 0.9892022 

5 RL3 3.9902670 0.9944717 

6 RL4 3.9975831 0.9982647 

0.5 

𝑟3 𝑟2 𝑟4 𝑟1 
𝑅1 𝑅2 𝑅3 

𝐷2 

𝐷1 

𝐷3 

𝑟∞ = 𝑅∞ 

𝐷𝑘 is the distance from 𝑥 = 0.5 to the 

closest fixed point in a super-stable orbit. 

𝐷𝑘 alternates in sign with 𝑘 odd/even. 



There is a set of constants that are a lot more general than the 𝑟𝑘, 𝑅𝑘, 𝐷𝑘 that you see in the bifurcation diagram. 

Those constants are tied to the specific form of the logistic map 𝑓𝑟(𝑥) = 𝑟𝑥(1 − 𝑥). The new class of constants 

are not as general as the three theorems that apply to a very broad class of maps with a single peak but still very 

general and of big interest, since they also appear in many natural phenomena in physics and elsewhere. 

The intervals Δ𝑟𝑘 = 𝑟𝑘+1 − 𝑟𝑘 , Δ𝑅𝑘 and Δ𝐷𝑘 shorten with 𝑘 and goes to zero as 𝑘 → ∞, a guess is that they 

might approach geometric series with asymptotic scaling factors 𝛿−1 and 𝛼−1 where: 

𝛿𝑟 ≡ lim
𝑘→∞

Δ𝑟𝑘
Δ𝑟𝑘+1

 𝛿𝑅 ≡ lim
𝑘→∞

Δ𝑅𝑘
Δ𝑅𝑘+1

 𝛼 ≡ lim
𝑘→∞

−𝐷𝑘
𝐷𝑘+1

   (−𝐷𝑘 →  𝛼 > 0)  

The idea is correct and 𝛿𝑟 = 𝛿𝑅. Numerical computations are easier to do with 𝑅𝑘 than 𝑟𝑘. For 𝑛 ≫ 1 we get: 

𝑟𝑛 ≈ 𝑟∞ − 𝐶 ⋅ 𝛿
−𝑛

𝑅𝑛 ≈ 𝑅∞ − 𝐶
′ ⋅ 𝛿−𝑛 

 For a constant 𝐶 and a different constant 𝐶′ (𝑅∞ = 𝑟∞). 

If the constants would be different for each iteration map, they would not be very interesting but it turns out that 

they are the same for every iteration map with a quadratic maximum, 𝑓′(𝑥c) = 0 and 𝑓′′(𝑥𝑐) < 0 at the peak. 

𝛼 and 𝛿 are called Feigenbaums constants: 
𝛿 = 4.6692016091…
𝛼 = 2.5029078750…

 

Orbits with period 𝑝 (𝑝 = 3,5,6, … ) that start with a tangent bifurcation from a chaotic 𝑟-region followed by 

a series of bifurcations giving rise to 𝑝 ⋅ 2𝑛- orbits give corresponding series in 𝑟 and 𝑅. 

They have the same asymptotic scaling but with different constants, 𝑟𝑝,𝑛 ≈ 𝑟𝑝,∞ − 𝐶𝑝 ⋅ 𝛿
−𝑛 for large 𝑛. 

Functions with other types of maxima have their own constants, the generalized Feigenbaum constants. 

Consider the iteration map 𝑥𝑘+1 = 1 − 𝑟̃|𝑥𝑘|
𝑞 where 1 < 𝑟̃ < 2 and 𝑞 > 1. 

The maximum is cubic if 𝑞 = 3 and quartic if 𝑞 = 4 etc. 𝛿(𝑞) increases with 𝑞 and 𝛼(𝑞) decreases with 𝑞. 

 

𝑞 → 3 4 5 6 

𝛿(𝑞) 5.967968… 7.284686… 8.349499… 9.296246… 

𝛼(𝑞) 1.927690… 1.690302… 1.555771… 1.467742… 

 

Some books in the reference list mention period triplings 𝑝 ⋅ 3𝑛 and higher that occur at 𝑟 = 𝑟∞ − 𝐶′ ⋅ 𝛿
′−𝑛 

with different Feigenbaum constants 𝛿′. The period triplings are said to occur with 𝛿′ = 55.247, but 

there are no trifurcations where an attracting fixpoint branch splits into three branches like the trident of 

Poseidon, not in the logistic map or any other iteration map. What do they mean? 

There is a period-3 orbit that arise from ‘chaos’. When the bifurcation process is finished each branch will give 

rise to a miniature version of the bifurcation diagram, with new period-3 orbits. From the global view this is a 

period-32orbit. The self-similarity of the diagram means that this will repeat indefinitely. Is this the answer? 

Experimentation with the ITERATOR gives 𝑟3 = 3.8285 →  𝑟3⋅3 = 3.8536 → 𝑟3⋅32 = 3.85407 

The first approximation of 𝛿3  becomes (3.8536 − 3.8282)/(3.85407 − 3.8536) ≈ 53.4 

Is it a correct assumption?  

Limiting values: 

lim
𝑞→∞

𝛿(𝑞) = 29.57 lim
𝑞→∞

𝛼(𝑞)−𝑞 = 0.033

lim
𝑞→1+

𝛿(𝑞) = 2 lim
𝑞→1+

𝛼(𝑞) = ∞
 

 



The assumption is confirmed by data from Zeng that gives 𝑅̃-values for super-stable orbits from various 

positions in the bifurcation diagram. The data is based on the related map 𝑥𝑘+1 = 1 − 𝑟̃𝑥𝑘
𝑞
. 

There is a correspondence with this map when 𝑞 = 2 and the logistic map 𝑥𝑘+1 = 𝑟𝑥𝑘(1 − 𝑥𝑘). 

The translation between 𝑟 and 𝑟̃ is 𝑟̃ = 𝑟(𝑟 − 2)/4 and similarly for 𝑅 and 𝑅̃. 

The following table is based on data for super-stable orbits from the article by Zeng et al.. 

RL-Sequence 𝑛 Period 𝑅 𝑅̃  (𝑞 = 2) 𝛿 𝑅̃  (𝑞 = 4) 𝛿 𝑅̃  (𝑞 = 6) 𝛿 

(𝑅𝐿)∗𝑛 

1 3 3.831874 1.754877 

55.247 

1.856674 

85.81 

1.898653 

130.3 
2 9 3.853675 1.785865 1.908694 1.948454 

3 27 3.854070 1.786429 1.909328 1.948863 

4 81 3.854078 1.786440 1.909335 1.948866 

(𝑅𝐿2)∗𝑛 
1 4 3.960270 1.940799 

981.6 
1.981964 

1275 
1.991457 

2220 
2 16 3.961555 1.942702 1.985501 1.994205 

(𝑅𝐿𝑅2)∗𝑛 1 5 3.738914 1.625413 255.5 1.725711 291.9 1.776745 431.9 

(𝑅𝐿2𝑅)∗𝑛 1 5 3.906697 1.862222 1287 1.942075 1418 1.967639 2434 

(𝑅𝐿3)∗𝑛 1 5 3.990267 1.985424 17000? 1.997746 21000? 1.999287 43000? 

 

Remains to explain what exponentiation of RL-sequences with the operation * means. 

The composition operator * on two RL-sequences P and Q where Q = 𝜎1𝜎2…𝜎𝑞−1 (𝜎𝑘 ∈ {𝑅, 𝐿}) 

depends on the number of Rs in Q. 

If the number of R symbols in Q is even: P*Q = P𝜎1P𝜎2P…P𝜎𝑞−1P 

If the number of R symbols in Q is odd: P*Q = P𝜏1P𝜏2P…P𝜏𝑞−1P 𝜏𝑖 ≠ 𝜎𝑖 (the opposite symbol) 

The operation is associative but not commutative. If P is an orbit of length 𝑝 and Q an orbit of length 𝑞 then PQ 

represents an orbit of length 𝑝(𝑝 − 1) + 𝑞 and 𝑃∗𝑛 = 𝑃 ∗ 𝑃 ∗ …∗ 𝑃⏟        
𝑛 times

 represents a 𝑝𝑛-orbit. 

For example, some super-stable orbits with periods 2𝑛 and 3𝑛 of the logistic map are as follows: 

RL-Sequence Period R 𝑥0, 𝑥1, 𝑥2, … 

𝑅 2 3.23607.. ½→0.809..→½ 

𝑅∗2 = 𝑅𝐿𝑅 4 3.49856.. ½→0.874..→0.383..→0.827..→½ 

𝑅∗3 = 𝑅𝐿𝑅𝑅𝑅𝐿𝑅 8 3.55464.. ½→0.888.. →0.351.. →0.810.. →0.545.. →0.881.. →0.372.. →0.830.. →½ 

𝑅𝐿 3 3.831874.. ½→0.957.. →0.154.. →½ 

(𝑅𝐿)∗2 = 𝑅𝐿𝐿𝑅𝐿𝑅𝑅𝐿 9 3.853675.. ½→0.963. . →0.135..→0.452..→0.954..→ 0.166. .→ 0.535. .→ 0.958. .→ 0.153. .→½ 

 

Numerical experimentation is good but a secure mathematical foundation of Feigenbaum constants is needed. 

Let 𝑅𝑛 be the 𝑟-points where 𝑥𝑘+1 = 𝑟𝑥(1 − 𝑥) = 𝑓(𝑥, 𝑟) har super-stable orbits of period 2𝑛, 𝑓′ (
1

2
 , 𝑅𝑛) = 0. 

  

𝑓(𝑥, 𝑅0) 𝑓2(𝑥, 𝑅1) 𝑓4(𝑥, 𝑅2) 



ln(𝜌(𝑥)) when 𝑟 = 3.8 

𝑥 

The portions of the graphs inside the dashed squares look similar apart from reflections in the point (
1

2
,
1

2
). 

The square side reduces with a scale factor 𝛼̂𝑛 that appears to have a limit 𝛼̂. 

With a critical point in 𝑥 = 0 like 𝑓(𝑥, 𝑟̃) = 1 − 𝑟̃|𝑥|𝑞 instead of 𝑥 = 1/2 this is expressed by: 

𝑓2
𝑛
(𝑥, 𝑅𝑛) ≅ (−𝛼𝑛)𝑓

2𝑛+1(−𝑥/𝛼𝑛, 𝑅𝑛+1)  

The similarity assumption is strengthened by the fact that the limit as 𝑛 → ∞ exists. 

lim
𝑛→∞

(−𝛼𝑛)
𝑛 𝑓2

𝑛
(𝑥/(−𝛼𝑛)

𝑛, 𝑅𝑛) = 𝜑 (𝑥) 

This limit satisfies the Cvitanovic-Feigenbaum functional equation: 𝑇[𝜑(𝑥)] = 𝜑(𝑥) 

with a functional operator T that acts on a functional space, a Banach space Ω. 

𝜑(𝑥) is a fixpoint of the period-doubling operator 𝑇:Ω → Ω, 

or rather 𝑇𝑞 if we deal with functions of the form 𝑓(𝑥) = 1 + 𝐹(|𝑥|𝑞), such as 𝑓(𝑥) = 1 + 𝑟̃𝑥2. 

𝑇[𝜑](𝑥) = −𝛼𝜑 (𝜑 (−
𝑥

𝛼
))    If 𝜑 is a solution so is 𝑘−1𝜑(𝑘𝑥), this is fixed by demanding 𝜑(0) = 1. 

An approximate solution 𝜑(𝑥) = 1 − 𝑎𝑥2 + 𝑂(𝑥4)  →  1 − 𝑎𝑥2 ≅ −𝛼(1 − 𝑎) − (2𝑎2/𝛼)𝑥2  → 

𝛼 = 1 + √3 = 2.73… a first approximation of 𝛼 = 2.502… found by Feigenbaum. 

On a Banach manifold you can do differential calculus. To get at 𝛿, you need to analyse the local linearization, 

the Fréchet derivative of 𝑇𝑞 at the fixed point 𝜑(𝑥). 

𝐿𝑞[Ψ](𝑥) = −𝛼{𝜑
′(𝜑(−𝑥/𝛼)) ⋅ Ψ(−𝑥/𝛼) + Ψ(𝜑(−𝑥/𝛼)) + Ψ(1)[𝜑′(𝑥) ⋅ 𝑥 − 𝜑(𝑥)]} 

The Feigenbaum constants 𝜑(𝑞) are given as the largest eigenvalue of 𝐿𝑞, 

which is the only eigenvalue of 𝐿𝑞 outside the unit disc. 

Another functional equation is needed for period triplings: 𝑇3[𝜑](𝑥) = −𝛼 (𝜑 (𝜑(𝜑(−𝑥/𝛼)))). 

Lyapunov exponents and Invariant densities 

The first sign of chaos is sensitive dependence on initial conditions 

which is measured by a positive Lyapunov exponent 𝜆(𝑥0). 

The Lyapunov exponent measures exponential separation 𝛿 → 𝛿𝑒𝑛𝜆 

After 𝑛 iterations 𝛿𝑒𝑛𝜆(𝑥0) ≈ |𝑓𝑛(𝑥0 + 𝛿) − 𝑓
𝑛(𝑥0)|. 

𝜆𝑟(𝑥0) = lim
𝑛→∞

1

𝑛
|𝐷𝑓𝑟

𝑛(𝑥0)| = lim
𝑛→∞

1

𝑛
∑ ln|𝑓𝑟

′(𝑥𝑘)|

𝑛−1

𝑘=0

 

At super-stable orbits with 𝑓𝑟
′(𝑥∗) = 0, 𝜆 goes to minus infinity. 

The distribution of 𝑥𝑘 in a 

chaos-regions is not as smooth  

for 𝑟 < 4 as it is for 𝑟 = 4 

𝜌4(𝑥) ∝
1

√𝑥(1 − 𝑥)
 

𝜌(𝑥) is the invariant density 

for the distribution of 𝑥𝑘. 

 

1

2
 

𝜆(𝑟) 


